报告题目:Automatic Variable Selection for Longitudinal Generalized Linear Models
报告时间:2015年9月28日10:00
报告地点:科学会堂A710
报告人简介:
李高荣,男,北京工业大学统计学教授,博士生导师。目前是中国现场统计研究会生存分析分会副秘书长、高维数据统计分会理事、美国数学评论评论员及众多国内外统计学术期刊的审稿专家。主要研究方向是非参数统计、经验似然、变量选择、复杂高维数据分析等。在《The Annals of Statistics》、《Statistics and Computing》、《Journal of Multivariate Analysis》和《Statistica Sinica》等国内外重要学术期刊发表论文60余篇,其中35篇被SCI收录。2015年在科学出版社出版1本专著《纵向数据半参数模型》。近5年主持国家自然科学青年基金和面上项目,北京市自然科学基金项目,北京市教育委员会科技计划面上项目等国家和省部级项目10多项。2010年入选北京市中青年骨干人才培养计划和北京市优秀人才培养资助计划,2012年破格为北京工业大学“京华人才”。
报告摘要:
We consider the problem of variable selection for the generalized linear models (GLMs) with longitudinal data. An automatic variable selection procedure is developed using smooth-thresholdgeneralized estimating equations (SGEE). The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero,and simultaneously estimates the nonzero regression coefficients by solving the SGEE. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property;the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we propose a penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of SGEE, and a real dataset is analyzed for further illustration.